On the expansion of a continued fraction of Gordon (Q1597191)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the expansion of a continued fraction of Gordon |
scientific article; zbMATH DE number 1738884
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the expansion of a continued fraction of Gordon |
scientific article; zbMATH DE number 1738884 |
Statements
On the expansion of a continued fraction of Gordon (English)
0 references
12 May 2002
0 references
The infinite product \[ P=\frac{(q^3;q^8)_\infty (q^5;q^8)_\infty}{(q;q^8)_\infty (q^7;q^8)_\infty} \] has a very nice and simple continued fraction expansion. In this paper Hirschhorn proves that the power series expansions of both \(P\) and \(1/P\) have beautiful regularities. Indeed, if \(P=\sum a_nq^n\) and \(P^{-1}=\sum b_nq^n\), then \[ a_{8n}>0,\quad a_{8n+1}>0,\quad a_{8n+2}>0,\quad a_{8n+3}=0, \] \[ a_{8n+12}>0,\quad a_{8n+5}<0,\quad a_{8n+6}<0,\quad a_{8n+7}=0, \] \[ b_{8n}>0,\quad b_{8n+1}<0,\quad b_{8n+2}=0,\quad b_{8n+3}>0, \] \[ b_{8n+4}<0,\quad b_{8n+5}>0,\quad b_{8n+6}=0,\quad b_{8n+7}<0 . \]
0 references
Gordon's continued fraction
0 references
power series expansion
0 references
periodicity of sign of coefficients
0 references
Jacobi's triple product
0 references