Congruences for \(_2F_1\) hypergeometric functions over finite fields (Q1597193)

From MaRDI portal





scientific article; zbMATH DE number 1738886
Language Label Description Also known as
English
Congruences for \(_2F_1\) hypergeometric functions over finite fields
scientific article; zbMATH DE number 1738886

    Statements

    Congruences for \(_2F_1\) hypergeometric functions over finite fields (English)
    0 references
    0 references
    12 May 2002
    0 references
    Hypergeometric functions over the finite field \(\text{GF}(p)\) were introduced by \textit{J. Greene} [Trans. Am. Math. Soc. 301, 77-101 (1987; Zbl 0629.12017)]. Parameters defining such a function \({}_{n+1}F_n\) are multiplicative characters of \(\text{GF}(p)\). The author proves several congruences for \({}_2F_1\). A typical example is \[ {}_2F_1\left( \begin{matrix} \phi_p, & \phi_p\\ & \varepsilon_p\end{matrix} \right|\left. -\frac{81}{175}\right)_p\equiv -\phi_p(7)(1+p^{-1})\pmod{16} \] where \(\phi_p\) is the Legendre symbol modulo \(p\), \(\varepsilon_p\) is the trivial character, \(p\neq 2,3,5,7\).
    0 references
    hypergeometric function
    0 references
    Galois field
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references