Congruences for \(_2F_1\) hypergeometric functions over finite fields (Q1597193)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Congruences for \(_2F_1\) hypergeometric functions over finite fields |
scientific article; zbMATH DE number 1738886
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Congruences for \(_2F_1\) hypergeometric functions over finite fields |
scientific article; zbMATH DE number 1738886 |
Statements
Congruences for \(_2F_1\) hypergeometric functions over finite fields (English)
0 references
12 May 2002
0 references
Hypergeometric functions over the finite field \(\text{GF}(p)\) were introduced by \textit{J. Greene} [Trans. Am. Math. Soc. 301, 77-101 (1987; Zbl 0629.12017)]. Parameters defining such a function \({}_{n+1}F_n\) are multiplicative characters of \(\text{GF}(p)\). The author proves several congruences for \({}_2F_1\). A typical example is \[ {}_2F_1\left( \begin{matrix} \phi_p, & \phi_p\\ & \varepsilon_p\end{matrix} \right|\left. -\frac{81}{175}\right)_p\equiv -\phi_p(7)(1+p^{-1})\pmod{16} \] where \(\phi_p\) is the Legendre symbol modulo \(p\), \(\varepsilon_p\) is the trivial character, \(p\neq 2,3,5,7\).
0 references
hypergeometric function
0 references
Galois field
0 references