On the half-half case of the Zarankiewicz problem (Q1598845)

From MaRDI portal





scientific article; zbMATH DE number 1746279
Language Label Description Also known as
English
On the half-half case of the Zarankiewicz problem
scientific article; zbMATH DE number 1746279

    Statements

    On the half-half case of the Zarankiewicz problem (English)
    0 references
    0 references
    0 references
    28 May 2002
    0 references
    Let \(f(m,n)\) denote the minimum number of zero entries in a \(2m \times 2n\) \((0,1)\)-matrix \(A\) that contains no \(m \times n\) submatrix of ones. For this special case of the Zarankiewicz problem, \textit{J. R. Griggs} and \textit{J. Ouyang} [Eur. J. Comb. 18, No. 7, 751-761 (1997; Zbl 0887.05037)] showed that \(2n+m+1 \leq f(m,n) \leq 2n+2m-\text{ gcd}(m,n)+1\) whenever \(m \leq n.\) In this paper, the authors prove that \(\lim_{m \to \infty} (f(m,m+1)/m) = 3.\) They do so by determining the actual value of \(f(m,km+1)\) for arbitrary \(k\) und \(m.\) Moreover, the values of \(f(m,n)\) are given explicitly for \(m \leq 7\) and \(n \leq 20.\)
    0 references
    \((0,1)\)-matrices
    0 references
    lower and upper bounds for the number of zero entries in a matrix
    0 references
    the Zarankiewicz problem
    0 references

    Identifiers