The \(\bar\partial\)-problem for holomorphic (0,2)-forms on pseudoconvex domains in separable Hilbert spaces and D. F. N. spaces (Q1600020)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The \(\bar\partial\)-problem for holomorphic (0,2)-forms on pseudoconvex domains in separable Hilbert spaces and D. F. N. spaces |
scientific article; zbMATH DE number 1751703
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The \(\bar\partial\)-problem for holomorphic (0,2)-forms on pseudoconvex domains in separable Hilbert spaces and D. F. N. spaces |
scientific article; zbMATH DE number 1751703 |
Statements
The \(\bar\partial\)-problem for holomorphic (0,2)-forms on pseudoconvex domains in separable Hilbert spaces and D. F. N. spaces (English)
0 references
1 July 2003
0 references
The following result is shown: Let \(E\) be a DFN space and \(\Omega \) a pseudoconvex domain in \(E,\) let \(f:\Omega \rightarrow \Lambda(0,2)(E)\) be a holomorphic \((0,2)\)-form. Then there exists a \(\mathcal C^{\infty}\) \((0,1)\)-form \(g\) on \(\Omega \) such that \(\overline \partial g=f.\) The authors first prove the corresponding result for pseudoconvex open subsets in a separable Hilbert space.
0 references
\(d\)-bar problem
0 references
DFN spaces
0 references
pseudoconvex domain
0 references
holomorphic \((0,2)\)-form
0 references
separable Hilbert space
0 references