On metrics satisfying equation \(R_{ij}-\frac{1}{2}Kg_{ij}=T_{ij}\) for constant tensors \(T\) (Q1602423)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On metrics satisfying equation \(R_{ij}-\frac{1}{2}Kg_{ij}=T_{ij}\) for constant tensors \(T\) |
scientific article; zbMATH DE number 1758075
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On metrics satisfying equation \(R_{ij}-\frac{1}{2}Kg_{ij}=T_{ij}\) for constant tensors \(T\) |
scientific article; zbMATH DE number 1758075 |
Statements
On metrics satisfying equation \(R_{ij}-\frac{1}{2}Kg_{ij}=T_{ij}\) for constant tensors \(T\) (English)
0 references
23 June 2002
0 references
The interesting problem is to find necessary and sufficient conditions on a symmetric tensor \(T_{ij}\) on a compact manifold so that one can find a metric \(g_{ij}\) satisfying \(R_{ij}- \frac 12 Kg_{ij}= T_{ij}\), where \(R_{ij}\) is the Ricci tensor and \(K\) the scalar curvature of \(g_{ij}\). The authors give a necessary and sufficient condition for a constant symmetric tensor \(T_{ij}\) on \(\mathbb{R}^n\), \(n\geq 3\) for which there exist metrics \(\overline g\), conformal to a pseudo-Euclidean metric \(g\), such that \(\overline{R_{ij}} -\frac 12 \overline K\overline{g_{ij}} =T_{ij}\), where \(\overline{R_{ij}}\) and \(\overline{K}\) are the Ricci tensor and the scalar curvature of \(\overline g\). All solutions \(\overline g\) are given explicitly and it is shown that there are no complete metrics \(\overline g\) conformal and nonhomothetic to \(g\).
0 references
Ricci tensor
0 references
compact manifold
0 references
scalar curvature
0 references