Approximation of the Hilbert transform on the real semiaxis using Laguerre zeros (Q1602775)

From MaRDI portal





scientific article; zbMATH DE number 1758427
Language Label Description Also known as
English
Approximation of the Hilbert transform on the real semiaxis using Laguerre zeros
scientific article; zbMATH DE number 1758427

    Statements

    Approximation of the Hilbert transform on the real semiaxis using Laguerre zeros (English)
    0 references
    24 June 2002
    0 references
    The authors propose two algorithms for the computation of Cauchy principal value integrals on the semiaxis given by \[ H(f w_\alpha,t)=\int^\infty_0 f(x)\;\frac{W_\alpha(x)}{x-t} dx, \] where \(xw_\alpha(x)=x^\alpha e^{-x}\), \(\alpha\geq 0\), \(t>0\). The proposed quadrature rules use zeros of Laguerre polynomials. Next theoretical error estimates are proved. Some approximate values for the integral \(H(f w_\alpha,t)\), \(t\in \mathbb{R}^+\) are obtained by using the algorithms described in the paper.
    0 references
    Hilbert transform
    0 references
    Gaussian quadrature rules
    0 references
    product quadrature rules
    0 references
    algorithms
    0 references
    Cauchy principal value integrals
    0 references
    Laguerre polynomials
    0 references
    error estimates
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references

    Identifiers