Approximation of the Hilbert transform on the real semiaxis using Laguerre zeros (Q1602775)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Approximation of the Hilbert transform on the real semiaxis using Laguerre zeros |
scientific article; zbMATH DE number 1758427
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Approximation of the Hilbert transform on the real semiaxis using Laguerre zeros |
scientific article; zbMATH DE number 1758427 |
Statements
Approximation of the Hilbert transform on the real semiaxis using Laguerre zeros (English)
0 references
24 June 2002
0 references
The authors propose two algorithms for the computation of Cauchy principal value integrals on the semiaxis given by \[ H(f w_\alpha,t)=\int^\infty_0 f(x)\;\frac{W_\alpha(x)}{x-t} dx, \] where \(xw_\alpha(x)=x^\alpha e^{-x}\), \(\alpha\geq 0\), \(t>0\). The proposed quadrature rules use zeros of Laguerre polynomials. Next theoretical error estimates are proved. Some approximate values for the integral \(H(f w_\alpha,t)\), \(t\in \mathbb{R}^+\) are obtained by using the algorithms described in the paper.
0 references
Hilbert transform
0 references
Gaussian quadrature rules
0 references
product quadrature rules
0 references
algorithms
0 references
Cauchy principal value integrals
0 references
Laguerre polynomials
0 references
error estimates
0 references
0 references
0 references
0 references
0.9340718
0 references
0 references
0.8980931
0 references
0.88736427
0 references
0.88529813
0 references
0.8824169
0 references
0.88201374
0 references