The surface area of the bicylinder and Archimedes' method (Q1604667)

From MaRDI portal





scientific article; zbMATH DE number 1764733
Language Label Description Also known as
English
The surface area of the bicylinder and Archimedes' method
scientific article; zbMATH DE number 1764733

    Statements

    The surface area of the bicylinder and Archimedes' method (English)
    0 references
    0 references
    8 July 2002
    0 references
    ``A bicylinder is the intersection of two equal right circular cylinders whose axes intersect at right angles. Archimedes says in his \textit{Method} that the volume of the bicylinder is two-thirds of the volume of the cube whose edge is equal to the diameter of the cylinders. The surface area of the bicylinder is also two-thirds of the surface area of this cube. I argue that this result was known to Archimedes.'' Archimedes mag diesen Satz im letzten Teil seiner \textit{Method}, der verloren ist, bewiesen haben. Der Verfasser beweist den Hilfssatz: Ist \(d\) die Würfelkante, dann ist die Oberfläche 4\(d^2\) des Bizylinders 2/3 der Oberfläche des umschriebenen Würfels: \[ 4 d^2= (2/3)\cdot 6\cdot d^2. \] Mit Hilfe dieses Satzes rekonstruiert der Verfasser den Beweis für die Behauptung des Archimedes.
    0 references

    Identifiers