Inverse problem for a multidimensional heat equation with an unknown source function (Q1605613)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Inverse problem for a multidimensional heat equation with an unknown source function |
scientific article; zbMATH DE number 1769803
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Inverse problem for a multidimensional heat equation with an unknown source function |
scientific article; zbMATH DE number 1769803 |
Statements
Inverse problem for a multidimensional heat equation with an unknown source function (English)
0 references
21 July 2002
0 references
The author considers an inverse problem for the equation \(u_t=\Delta u+g_0(x,t)+f_1(x)g_1(x)+f_2(x)g_2(x), x\in D\subset{\mathbb R}^n\), \(0<t<T,\) with unknown functions \(f_1\) and \(f_2\), the initial condition \(u(x,0)=\varphi(x)\), \(x\in \overline{D},\) the boundary condition \(u(x,t)|_{S_T}=\mu(x,t)\), \((x,t)\in S_T=\partial D\times[0,T],\) and the overdetermination conditions of the form \(u(x_0,t)=\kappa(t)\), \(x_0\in D\), \(t\in[0,T]\), \(\int_0^Tu(x,t) dt=\psi(x)\), \(x\in\overline{D}\). Existence and uniqueness conditions for the inverse problem are given.
0 references
multidimensional heat equation
0 references
existence
0 references
Dirichlet boundary condition
0 references
uniqueness
0 references