Algorithmic number theory. 5th international symposium, ANTS-V, Sydney, Australia, July 7--12, 2002. Proceedings (Q1611723)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Algorithmic number theory. 5th international symposium, ANTS-V, Sydney, Australia, July 7--12, 2002. Proceedings |
scientific article; zbMATH DE number 1789359
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Algorithmic number theory. 5th international symposium, ANTS-V, Sydney, Australia, July 7--12, 2002. Proceedings |
scientific article; zbMATH DE number 1789359 |
Statements
Algorithmic number theory. 5th international symposium, ANTS-V, Sydney, Australia, July 7--12, 2002. Proceedings (English)
0 references
27 August 2002
0 references
The articles of this volume will be reviewed individually. The preceding symposium (4th, 2000) has been reviewed (see Zbl 0960.00039). Indexed articles: \textit{Bhargava, Manjul}, Gauss composition and generalizations, 1-8 [Zbl 1058.11030] \textit{Coates, John}, Elliptic curves -- the crossroads of theory and computation, 9-19 [Zbl 1133.11311] \textit{Joux, Antoine}, The Weil and Tate pairings as building blocks for public key cryptosystems, 20-32 [Zbl 1072.14028] \textit{Poonen, Bjorn}, Using elliptic curves of rank one towards the undecidability of Hilbert's tenth problem over rings of algebraic integers, 33-42 [Zbl 1057.11068] \textit{Satoh, Takakazu}, On \(p\)-adic point counting algorithms for elliptic curves over finite fields, 43-66 [Zbl 1058.11043] \textit{Bosma, Wieb; de Smit, Bart}, On arithmetically equivalent number fields of small degree, 67-79 [Zbl 1068.11080] \textit{Cohen, Henri; Diaz y Diaz, Francisco; Olivier, Michel}, A survey of discriminant counting, 80-94 [Zbl 1058.11076] \textit{Everest, Graham; Rogers, Peter; Ward, Thomas}, A higher-rank Mersenne problem, 95-107 [Zbl 1071.11072] \textit{Fukuda, Takashi; Komatsu, Keiichi}, An application of Siegel modular functions to Kronecker's limit formula, 108-119 [Zbl 1069.11015] \textit{Jacobson, Michael J. jun.; van der Poorten, Alfred J.}, Computational aspects of NUCOMP, 120-133 [Zbl 1058.11074] \textit{Louboutin, Stéphane R.}, Efficient computation of class numbers of real Abelian number fields, 134-147 [Zbl 1067.11081] \textit{Vollmer, Ulrich}, An accelerated Buchmann algorithm for regulator computation in real quadratic fields, 148-162 [Zbl 1062.11081] \textit{Auer, Roland; Top, Jaap}, Some genus 3 curves with many points, 163-171 [Zbl 1058.11039] \textit{Bruin, Nils; Elkies, Noam D.}, Trinomials \(ax + bx + c\) and \(ax + bx+ c\) with Galois groups of order 168 and \(8\cdot 168\), 172-188 [Zbl 1058.11044] \textit{González-Jiménez, Enrique; González, Josep; Guàrdia, Jordi}, Computations on modular Jacobian surfaces, 189-197 [Zbl 1055.11038] \textit{Kresch, Andrew; Tschinkel, Yuri}, Integral points on punctured Abelian surfaces, 198-204 [Zbl 1071.11032] \textit{Shaska, Tony}, Genus 2 curves with (3,3)-split Jacobian and large automorphism group, 205-218 [Zbl 1055.14030] \textit{Verrill, Helena A.}, Transportable modular symbols and the intersection pairing, 219-233 [Zbl 1057.11030] \textit{Couveignes, Jean-Marc; Henocq, Thierry}, Action of modular correspondences around CM points, 234-243 [Zbl 1057.11026] \textit{Elkies, Noam D.}, Curves \(Dy^2= x^3-x\) of odd analytic rank, 244-251 [Zbl 1058.11034] \textit{Enge, Andreas; Morain, François}, Comparing invariants for class fields of imaginary quadratic fields, 252-266 [Zbl 1058.11077] \textit{Stein, William A.; Watkins, Mark}, A database of elliptic curves -- first report, 267-275 [Zbl 1058.11036] \textit{Fouquet, Mireille; Morain, François}, Isogeny volcanoes and the SEA algorithm, 276-291 [Zbl 1058.11041] \textit{Kim, Hae Young; Park, Jung Youl; Cheon, Jung Hee; Park, Je Hong; Kim, Jae Heon; Hahn, Sang Geun}, Fast elliptic curve point counting using Gaussian normal basis, 292-307 [Zbl 1058.11075] \textit{Denef, Jan; Vercauteren, Frederik}, An extension of Kedlaya's algorithm to Artin-Schreier curves in characteristic 2, 308-323 [Zbl 1058.11040] \textit{Galbraith, Steven D.; Harrison, Keith; Soldera, David}, Implementing the Tate pairing, 324-337 [Zbl 1058.11072] \textit{Pomerance, Carl; Shparlinski, Igor E.}, Smooth orders and cryptographic applications, 338-348 [Zbl 1058.11059] \textit{Shparlinski, Igor E.; Steinfeld, Ron}, Chinese remaindering for algebraic numbers in a hidden field, 349-356 [Zbl 1058.11078] \textit{Hess, Florian}, An algorithm for computing Weierstrass points, 357-371 [Zbl 1058.14043] \textit{Li, Wen-Ching W.; Maharaj, Hiren; Stichtenoth, Henning; Elkies, Noam D.}, New optimal tame towers of function fields over small finite fields, 372-389 [Zbl 1064.11075] \textit{van der Poorten, Alfred J.; Tran, Xuan Chuong}, Periodic continued fractions in elliptic function fields, 390-404 [Zbl 1058.11050] \textit{Holden, Joshua}, Fixed points and two-cycles of the discrete logarithm, 405-415 [Zbl 1058.11073] \textit{Horwitz, Jeremy; Venkatesan, Ramarathnam}, Random Cayley digraphs and the discrete logarithm, 416-430 [Zbl 1058.05036] \textit{Joux, Antoine; Lercier, Reynald}, The function field sieve is quite special, 431-445 [Zbl 1057.11069] \textit{Leyland, Paul; Lenstra, Arjen; Dodson, Bruce; Muffett, Alec; Wagstaff, Sam}, MPQS with three large primes, 446-460 [Zbl 1058.11069] \textit{Matsuo, Kazuto; Chao, Jinhui; Tsujii, Shigeo}, An improved baby step giant step algorithm for point counting of hyperelliptic curves over finite fields, 461-474 [Zbl 1058.11042] \textit{Ebinger, Peter; Teske, Edlyn}, Factoring \(N = pq^2\) with the elliptic curve method, 475-490 [Zbl 1058.11068] \textit{Steel, Allan}, A new scheme for computing with algebraically closed fields, 491-505 [Zbl 1057.12006] \textit{Rojas, J. Maurice}, Additive complexity and roots of polynomials over number fields and \(\mathfrak p\)-adic fields, 506-515 [Zbl 1057.12005]
0 references
Sydney (Australia)
0 references
Proceedings
0 references
Symposium
0 references
ANTS-V
0 references
Algorithmic number theory
0 references