Well-posedness of the Keller-Segel system in Fourier-Besov-Morrey spaces (Q1624156)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Well-posedness of the Keller-Segel system in Fourier-Besov-Morrey spaces |
scientific article; zbMATH DE number 6979889
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Well-posedness of the Keller-Segel system in Fourier-Besov-Morrey spaces |
scientific article; zbMATH DE number 6979889 |
Statements
Well-posedness of the Keller-Segel system in Fourier-Besov-Morrey spaces (English)
0 references
15 November 2018
0 references
Summary: In this note, we investigate the Cauchy problem for Keller-Segel system with fractional diffusion for the initial data \((u_0,v_0)\) in the critical Fourier-Bessov-Morrey spaces \(\mathcal{FN}_{q,\mu,r}^{2-2\alpha+d-\frac{d-\mu}{q}}(\mathbb R^d)\times \mathcal{FN}_{q,\mu,r}^{2-\alpha+d-\frac{d-\mu}{q}}(\mathbb R^d)\) with \(1 < \alpha\leq 2\). The global well-posedness with a small initial data of the solution to Keller-Segel system of double-parabolic type is established.
0 references
Keller-Segel system
0 references
fractional diffusions
0 references
Littlewood-Paley theory
0 references
Fourier-Besov space
0 references
well-posedness
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0.93546826
0 references
0.9326536
0 references
0.92619216
0 references
0.92090565
0 references
0.9207775
0 references
0.9140174
0 references
0.9122861
0 references