Upper bounds of the eigenvalues related to a weighted fractional \(p\)-Laplacian on metric graphs (Q1637103)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Upper bounds of the eigenvalues related to a weighted fractional \(p\)-Laplacian on metric graphs |
scientific article; zbMATH DE number 6882045
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Upper bounds of the eigenvalues related to a weighted fractional \(p\)-Laplacian on metric graphs |
scientific article; zbMATH DE number 6882045 |
Statements
Upper bounds of the eigenvalues related to a weighted fractional \(p\)-Laplacian on metric graphs (English)
0 references
7 June 2018
0 references
The main result of the article states explicit upper bounds of eigenvalues for a weighted fractional \(p\)-Laplacian operator on a connected metric graph with a finite total length.
0 references
fractional \(p\)-Laplacian operator
0 references
metric graph
0 references
Sobolev spaces
0 references
0.93304265
0 references
0.9217909
0 references
0.9043578
0 references
0.90048164
0 references
0.89778227
0 references
0.89725214
0 references
0.89669675
0 references
0.8950037
0 references