Interpolation between Hölder and Lebesgue spaces with applications (Q1645114)
From MaRDI portal
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Interpolation between Hölder and Lebesgue spaces with applications |
scientific article |
Statements
Interpolation between Hölder and Lebesgue spaces with applications (English)
0 references
28 June 2018
0 references
Let \(n\in{\mathbb N}\). For \(p\in(0,\infty]\), let \(\|u\|_p\) denote the norm of a function \(u\in L^p({\mathbb R}^n)\). For \(p<0\), let \(s=[-n/p]\), where \([\alpha]\) stands for the integer part of \(\alpha\), and let \(\widetilde{p}\) be such that \(n/\widetilde{p}=s+n/p\). Further, put \(\|u\|_p=\|\nabla^s u\|_{\widetilde{p}}\) for \(-\infty<\widetilde{p}<-n\), and \(\|u\|_p=\|\nabla^su\|_\infty\) for \(s=-n/p\), where the semi-norm \(\|\cdot\|_{\widetilde{p}}\), \(-\infty<\widetilde{p}<-n\), is defined by \(\|u\|_{\widetilde{p}}:=\sup_{x,y\in{\mathbb R}^n}|u(x)-u(y)|\,|x-y|^{n/p}\). The following interpolation inequality is the main result of the paper. Let \(q\in[1,\infty]\), \(p,r\in(-\infty,-n]\cup[1,\infty]\) and \(\theta\in(0,1)\) be such that \(1/p=\theta/r+(1-\theta)/q\). Then there exists a constant \(C\) independent of \(u\) such that \(\|u\|_p\leq C\|u\|_r^\theta\|u\|_{q,\infty}^{1-\theta}\), where \(\|u\|_{q,\infty}:=\sup_{t>0}t|\{|u|>t\}|^{1/q}\) for \(1\leq q<\infty\) and \(\|u\|_{\infty,\infty}:=\|u\|_\infty\). This interpolation inequality is then applied to prove the Gagliardo-Nirenberg inequality for a wider scale of parameters.
0 references
interpolation
0 references
Lorentz spaces
0 references
Hölder spaces
0 references
inequality
0 references
Sobolev spaces
0 references
0 references