Interpolation between Hölder and Lebesgue spaces with applications (Q1645114)

From MaRDI portal
scientific article
Language Label Description Also known as
English
Interpolation between Hölder and Lebesgue spaces with applications
scientific article

    Statements

    Interpolation between Hölder and Lebesgue spaces with applications (English)
    0 references
    0 references
    0 references
    0 references
    28 June 2018
    0 references
    Let \(n\in{\mathbb N}\). For \(p\in(0,\infty]\), let \(\|u\|_p\) denote the norm of a function \(u\in L^p({\mathbb R}^n)\). For \(p<0\), let \(s=[-n/p]\), where \([\alpha]\) stands for the integer part of \(\alpha\), and let \(\widetilde{p}\) be such that \(n/\widetilde{p}=s+n/p\). Further, put \(\|u\|_p=\|\nabla^s u\|_{\widetilde{p}}\) for \(-\infty<\widetilde{p}<-n\), and \(\|u\|_p=\|\nabla^su\|_\infty\) for \(s=-n/p\), where the semi-norm \(\|\cdot\|_{\widetilde{p}}\), \(-\infty<\widetilde{p}<-n\), is defined by \(\|u\|_{\widetilde{p}}:=\sup_{x,y\in{\mathbb R}^n}|u(x)-u(y)|\,|x-y|^{n/p}\). The following interpolation inequality is the main result of the paper. Let \(q\in[1,\infty]\), \(p,r\in(-\infty,-n]\cup[1,\infty]\) and \(\theta\in(0,1)\) be such that \(1/p=\theta/r+(1-\theta)/q\). Then there exists a constant \(C\) independent of \(u\) such that \(\|u\|_p\leq C\|u\|_r^\theta\|u\|_{q,\infty}^{1-\theta}\), where \(\|u\|_{q,\infty}:=\sup_{t>0}t|\{|u|>t\}|^{1/q}\) for \(1\leq q<\infty\) and \(\|u\|_{\infty,\infty}:=\|u\|_\infty\). This interpolation inequality is then applied to prove the Gagliardo-Nirenberg inequality for a wider scale of parameters.
    0 references
    interpolation
    0 references
    Lorentz spaces
    0 references
    Hölder spaces
    0 references
    inequality
    0 references
    Sobolev spaces
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references