Particle swarm optimization iterative identification algorithm and gradient iterative identification algorithm for Wiener systems with colored noise (Q1654314)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Particle swarm optimization iterative identification algorithm and gradient iterative identification algorithm for Wiener systems with colored noise |
scientific article; zbMATH DE number 6914661
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Particle swarm optimization iterative identification algorithm and gradient iterative identification algorithm for Wiener systems with colored noise |
scientific article; zbMATH DE number 6914661 |
Statements
Particle swarm optimization iterative identification algorithm and gradient iterative identification algorithm for Wiener systems with colored noise (English)
0 references
8 August 2018
0 references
Summary: This paper considers the parameter identification of Wiener systems with colored noise. The difficulty in the identification is that the model is nonlinear and the intermediate variable cannot be measured. Particle swarm optimization is an artificial intelligence evolutionary method and is effective in solving nonlinear optimization problem. In this paper, we obtain the identification model of the Wiener system and then transfer the parameter identification problem into an optimization problem. Then, we derive a particle swarm optimization iterative (PSOI) identification algorithm to identify the unknown parameter of the Wiener system. Furthermore, a gradient iterative identification algorithm is proposed to compare with the particle swarm optimization iterative algorithm. Numerical simulation is carried out to evaluate the performance of the PSOI algorithm and the gradient iterative algorithm. The simulation results indicate that the proposed algorithms are effective and the PSOI algorithm can achieve better performance over the gradient iterative algorithm.
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references