Antinormal weighted composition operators (Q1669246)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Antinormal weighted composition operators |
scientific article; zbMATH DE number 6929375
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Antinormal weighted composition operators |
scientific article; zbMATH DE number 6929375 |
Statements
Antinormal weighted composition operators (English)
0 references
30 August 2018
0 references
Summary: Let \(l^2 = L^2 \left(\mathbb{N}, \mu\right)\), where \(\mathbb{N}\) is set of all positive integers and \(\mu\) is the counting measure whose \(\sigma\)-algebra is the power set of \(\mathbb{N}\). In this paper, we obtain necessary and sufficient conditions for a weighted composition operator to be antinormal on the Hilbert space \(l^2\). We also determine a class of antinormal weighted composition operators on Hardy space \(H^2 \left(\mathbb{D}\right)\).
0 references
0.9223297
0 references
0.9192138
0 references
0.9078605
0 references
0.9078605
0 references