Toeplitz operators on abstract Hardy spaces built upon Banach function spaces (Q1674060)

From MaRDI portal





scientific article; zbMATH DE number 6801989
Language Label Description Also known as
English
Toeplitz operators on abstract Hardy spaces built upon Banach function spaces
scientific article; zbMATH DE number 6801989

    Statements

    Toeplitz operators on abstract Hardy spaces built upon Banach function spaces (English)
    0 references
    0 references
    1 November 2017
    0 references
    Summary: Let \(X\) be a Banach function space over the unit circle \(\mathbb{T}\) and let \(H[X]\) be the abstract Hardy space built upon \(X\). If the Riesz projection \(P\) is bounded on \(X\) and \(a \in L^{\infty}\), then the Toeplitz operator \(T_af=P(af)\) is bounded on \(H[X]\). We extend well-known results by Brown and Halmos for \(X=L^2\) and show that, under certain assumptions on the space \(X\), the Toeplitz operator \(T_a\) is bounded (resp., compact) if and only if \(a \in L^{\infty}\) (resp., \(a=0\)). Moreover, \(\| a\|_{L^{\infty}} \leq \| T_a\|_{\mathcal{B}(H[X])}\leq \| P\|_{\mathcal{B}(X)} \| a\|_{L^{\infty}}\). These results are specified to the cases of abstract Hardy spaces built upon Lebesgue spaces with Muckenhoupt weights and Nakano spaces with radial oscillating weights.
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references

    Identifiers