Toeplitz operators on abstract Hardy spaces built upon Banach function spaces (Q1674060)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Toeplitz operators on abstract Hardy spaces built upon Banach function spaces |
scientific article; zbMATH DE number 6801989
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Toeplitz operators on abstract Hardy spaces built upon Banach function spaces |
scientific article; zbMATH DE number 6801989 |
Statements
Toeplitz operators on abstract Hardy spaces built upon Banach function spaces (English)
0 references
1 November 2017
0 references
Summary: Let \(X\) be a Banach function space over the unit circle \(\mathbb{T}\) and let \(H[X]\) be the abstract Hardy space built upon \(X\). If the Riesz projection \(P\) is bounded on \(X\) and \(a \in L^{\infty}\), then the Toeplitz operator \(T_af=P(af)\) is bounded on \(H[X]\). We extend well-known results by Brown and Halmos for \(X=L^2\) and show that, under certain assumptions on the space \(X\), the Toeplitz operator \(T_a\) is bounded (resp., compact) if and only if \(a \in L^{\infty}\) (resp., \(a=0\)). Moreover, \(\| a\|_{L^{\infty}} \leq \| T_a\|_{\mathcal{B}(H[X])}\leq \| P\|_{\mathcal{B}(X)} \| a\|_{L^{\infty}}\). These results are specified to the cases of abstract Hardy spaces built upon Lebesgue spaces with Muckenhoupt weights and Nakano spaces with radial oscillating weights.
0 references
0 references
0 references
0 references
0 references
0 references
0 references