On interpolation of noncommutative symmetric Hardy spaces (Q1683269)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On interpolation of noncommutative symmetric Hardy spaces |
scientific article; zbMATH DE number 6816302
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On interpolation of noncommutative symmetric Hardy spaces |
scientific article; zbMATH DE number 6816302 |
Statements
On interpolation of noncommutative symmetric Hardy spaces (English)
0 references
6 December 2017
0 references
\textit{W. B. Arveson} [Am. J. Math. 89, 578--642 (1967; Zbl 0183.42501)] introduced the notion of finite, maximal, subdiagonal algebras of a von Neumann algebra and extended the notion of weak\(^*\) Dirichlet algebras. In this paper, the authors study some properties of noncommutative analogues of symmetric Banach spaces. The first result is about the oncommutative analogue of pointwise product spaces. The authors give a new definition of the noncommutative symmetric Hardy spaces and obtain a Szegő-type factorization theorem and a first result about pointwise products for noncommutative symmetric Hardy spaces. Furthermore, the authors prove the noncommutative symmetric Hardy space version of a result of \textit{A. P. Calderón} [Stud. Math. 24, 113--190 (1964; Zbl 0204.13703)].
0 references
noncommutative symmetric Hardy space
0 references
pointwise product space
0 references
complex interpolation
0 references
0 references