Nonparametric relative error regression for spatial random variables (Q1685285)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Nonparametric relative error regression for spatial random variables |
scientific article; zbMATH DE number 6818213
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Nonparametric relative error regression for spatial random variables |
scientific article; zbMATH DE number 6818213 |
Statements
Nonparametric relative error regression for spatial random variables (English)
0 references
13 December 2017
0 references
Let \(Z=(X,Y)\) be a \(\mathbb{R}^d\times\mathbb{R}\)-valued random vector with \(Y>0\). The mean squared relative error \(E((Y-t)^2/Y^2\mid X=x)\) with respect to \(t\) is minimized by \(\vartheta(x)= E(Y^{-1}\mid X=x)/E(Y^{-2}\mid X=x)\), provided the integrals exist. Let \(Z_i\), \(i\in\mathcal{I}_n\subset\mathbb{Z}^N\) be a strictly stationary random field, consisting of copies of \(Z\). A natural estimate of \(\vartheta(x)\) is the relative error regression kernel estimate \(\tilde\vartheta_n(x)= \sum_{i\in\mathcal{I}_n}Y_i^{-1}K(h^{-1}(x-X_i))/\sum_{i\in\mathcal{I}_n}Y_i^{-2}K(h^{-1}(x-X_i))\), where \(K\) is a kernel and \(h\) a bandwidth. Under suitable regularity conditions, the authors establish uniform convergence \(\sup_{x\in S}|\tilde\vartheta_n(x)-\vartheta(x)|\to 0\) a.s. over a compact set \(S\) as well as pointwise asymptotic normality of \(\tilde\vartheta_n(x)-\vartheta(x)\), properly standardized. Confidence intervals of \(\vartheta(x)\) are derived from the asymptotic normality. A finite sample comparison with the classical kernel regression estimator is in favor of the relative error regression estimate when there are outliers in the data. An application to real data completes the paper.
0 references
kernel method
0 references
relative error
0 references
nonparametric estimation
0 references
associated variable
0 references
0 references
0 references