Regular versus singular order of contact on pseudoconvex hypersurfaces (Q1711024)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Regular versus singular order of contact on pseudoconvex hypersurfaces |
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Regular versus singular order of contact on pseudoconvex hypersurfaces |
scientific article |
Statements
Regular versus singular order of contact on pseudoconvex hypersurfaces (English)
0 references
16 January 2019
0 references
Let $\mathcal H \subset \mathbb C^n$ be a smooth, real hypersurface and let $p\in \mathcal H.$ Let $\mathcal S$ denote the set of parameterized non-constant holomorphic curves $\gamma: V \longrightarrow \mathbb C^n$ with $\gamma (0)=p,$ where $V\subset \mathbb C $ is a neighborhood of $0.$ For a local defining function $r$ of $\mathcal H$ let $\nu (r \circ \gamma) = \nu (r \circ \gamma)(0)$ denote the order of vanishing of the real-valued function $r\circ \gamma$ at $0.$ Let $\nu(\gamma)$ denote the unique $M\in \mathbb Z^+$ such that $\lim_{t \to 0} \frac{\gamma (t) - \gamma (0)}{t^M}$ exists and is $\neq (0, \dots,0).$ Let $\mathcal R \subset \mathcal S$ denote the set of curves with $\nu(\gamma)=1.$ \textit{J. P. D'Angelo} [Ann. Math. (2) 115, 615--637 (1982; Zbl 0488.32008)] introduced the notion of singular type $\Delta_1 (p) = \sup_{\gamma \in \mathcal S} \frac{\nu(r \circ \gamma)}{\nu (\gamma)}$ and of regular type $\Delta_1^{\mathrm{reg}} (p) = \sup_{\gamma \in \mathcal R} \nu(r\circ \gamma)$ of $p\in \mathcal H .$ The purpose of the paper under review is to show the following: let $\mathcal H \subset \mathbb C^n$ be a smooth real hypersurface and $p\in \mathcal H.$ If $\Delta_1^{\mathrm{reg}} (p) \le 3,$ then $\Delta_1 (p) \le 3$ and $\Delta_1 (p)= \Delta_1^{\mathrm{reg}} (p).$ If $\mathcal H$ is pseudoconvex near $p$ and $\Delta_1^{\mathrm{reg}} (p) =4,$ then $\Delta_1 (p) =4.$
0 references
real hypersurfaces
0 references
finite type
0 references
singular type
0 references
regular type
0 references
0 references
0 references
0.7115558
0 references
0.70744425
0 references
0.69550955
0 references
0.67044413
0 references
0.6696521
0 references