Linear maps on upper triangular matrices spaces preserving idempotent tensor products (Q1722187)

From MaRDI portal





scientific article; zbMATH DE number 7021812
Language Label Description Also known as
English
Linear maps on upper triangular matrices spaces preserving idempotent tensor products
scientific article; zbMATH DE number 7021812

    Statements

    Linear maps on upper triangular matrices spaces preserving idempotent tensor products (English)
    0 references
    0 references
    0 references
    0 references
    14 February 2019
    0 references
    Summary: Suppose \(m, n \geq 2\) are positive integers. Let \(\mathcal{T}_n\) be the space of all \(n \times n\) complex upper triangular matrices, and let \(\phi\) be an injective linear map on \(\mathcal{T}_m \otimes \mathcal{T}_n\). Then \(\phi(A \otimes B)\) is an idempotent matrix in \(\mathcal{T}_m \otimes \mathcal{T}_n\) whenever \(A \otimes B\) is an idempotent matrix in \(\mathcal{T}_m \otimes \mathcal{T}_n\) if and only if there exists an invertible matrix \(P \in \mathcal{T}_m \otimes \mathcal{T}_n\) such that \(\phi(A \otimes B) = P(\xi_1(A) \otimes \xi_2(B)) P^{- 1}\), \(\forall A \in \mathcal{T}_m\), \(B \in \mathcal{T}_n\), or when \(m = n\), \(\phi(A \otimes B) = P(\xi_1(B) \otimes \xi_2(A)) P^{- 1}\), \(\forall A \in \mathcal{T}_m\), \(B \in \mathcal{T}_m\), where \(\xi_1([a_{i j}]) = [a_{i j}]\) or \(\xi_1([a_{i j}]) = [a_{m - i + 1, m - j + 1}]\) and \(\xi_2([b_{i j}]) = [b_{i j}]\) or \(\xi_2([b_{i j}]) = [b_{n - i + 1, n - j + 1}] \).
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references