Fractional calculus of fractal interpolation function on \([0,b]\) (\(b>0\)) (Q1724638)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Fractional calculus of fractal interpolation function on \([0,b]\) (\(b>0\)) |
scientific article; zbMATH DE number 7022803
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Fractional calculus of fractal interpolation function on \([0,b]\) (\(b>0\)) |
scientific article; zbMATH DE number 7022803 |
Statements
Fractional calculus of fractal interpolation function on \([0,b]\) (\(b>0\)) (English)
0 references
14 February 2019
0 references
Summary: The paper researches the continuity of fractal interpolation function's fractional order integral on \([0,+\infty)\) and judges whether fractional order integral of fractal interpolation function is still a fractal interpolation function on \([0,b]\) (\(b>0\)) or not. Relevant theorems of iterated function system and Riemann-Liouville fractional order calculus are used to prove the above researched content. The conclusion indicates that fractional order integral of fractal interpolation function is a continuous function on \([0,+\infty)\) and fractional order integral of fractal interpolation is still a fractal interpolation function on the interval \([0,b]\).
0 references
0.92516816
0 references
0.9208651
0 references
0.92033005
0 references
0.9107407
0 references
0.9047675
0 references
0.9013836
0 references
0 references