\(H^1 \cap L^p\) versus \(C^1\) local minimizers (Q1724661)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: \(H^1 \cap L^p\) versus \(C^1\) local minimizers |
scientific article; zbMATH DE number 7022818
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | \(H^1 \cap L^p\) versus \(C^1\) local minimizers |
scientific article; zbMATH DE number 7022818 |
Statements
\(H^1 \cap L^p\) versus \(C^1\) local minimizers (English)
0 references
14 February 2019
0 references
Summary: We show that a local minimizer of \(\Phi\) in the \(C^1\) topology must be a local minimizer in the \(H^1 \cap L^p\) topology, under suitable assumptions for the functional \(\Phi=(1/2)\int_\Omega |\nabla u|^2+(1/p)\int_ \Omega |u|^p-\int_\Omega F(x,u)\) with supercritical exponent \(p>2^*=2n/(n-2)\). This result can be used to establish a solution to the corresponding equation admitting sub- and supersolution. Hence, we extend the conclusion proved by \textit{H. Brézis} and \textit{L. Nirenberg} [C. R. Acad. Sci., Paris, Sér. I 317, No. 5, 465--472 (1993; Zbl 0803.35029)], the subcritical and critical case.
0 references