Traveling wave solutions of the Kadomtsev-Petviashvili-Benjamin-Bona-Mahony equation (Q1725335)

From MaRDI portal





scientific article; zbMATH DE number 7023365
Language Label Description Also known as
English
Traveling wave solutions of the Kadomtsev-Petviashvili-Benjamin-Bona-Mahony equation
scientific article; zbMATH DE number 7023365

    Statements

    Traveling wave solutions of the Kadomtsev-Petviashvili-Benjamin-Bona-Mahony equation (English)
    0 references
    14 February 2019
    0 references
    Summary: We use bifurcation method of dynamical systems to study exact traveling wave solutions of a nonlinear evolution equation. We obtain exact explicit expressions of bell-shaped solitary wave solutions involving more free parameters, and some existing results are corrected and improved. Also, we get some new exact periodic wave solutions in parameter forms of the Jacobian elliptic function. Further, we find that the bell-shaped waves are limits of the periodic waves in some sense. The results imply that we can deduce bell-shaped waves from periodic waves for some nonlinear evolution equations.
    0 references
    0 references

    Identifiers