Toeplitz operators via sesquilinear forms (Q1728896)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Toeplitz operators via sesquilinear forms |
scientific article; zbMATH DE number 7029830
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Toeplitz operators via sesquilinear forms |
scientific article; zbMATH DE number 7029830 |
Statements
Toeplitz operators via sesquilinear forms (English)
0 references
26 February 2019
0 references
This survey paper gives a common approach to studying Toeplitz operators on reproducing kernel Hilbert spaces, which is based on the language of sesquilinear forms and allows one to consider for Toeplitz operators non-standard symbols being unbounded functions, measures, and compactly supported distributions. A lot of concrete examples are analysed, which include Toeplitz operators with non-standard symbols on the Fock space, on the Bergman space, and on the Herglotz space consisting of solutions of the Helmholtz equation. For the entire collection see [Zbl 1392.45001].
0 references
reproducing kernel Hilbert space
0 references
sesquilinear form
0 references
Toeplitz operators
0 references
Fock space
0 references
Bergman space
0 references
Herglotz space
0 references