Positive solutions for singular impulsive Dirichlet boundary value problems (Q1741786)

From MaRDI portal





scientific article; zbMATH DE number 7051680
Language Label Description Also known as
English
Positive solutions for singular impulsive Dirichlet boundary value problems
scientific article; zbMATH DE number 7051680

    Statements

    Positive solutions for singular impulsive Dirichlet boundary value problems (English)
    0 references
    0 references
    0 references
    7 May 2019
    0 references
    The authors present sufficient conditions for the existence of one or two positive classical solutions for the following singular Dirichlet boundary value problem \[ \begin{gathered} -u''(t)-\frac{1}{u^\alpha(t)}= \lambda f (t, u(t)), \quad t \in \Omega,\\ u'(t_i^+)-u'(t^-_i)=I_i(u(t_i)), \quad i=1,\dots, p,\\ u(0)=u(1)=0 \end{gathered} \] where \(\lambda \in (0,+\infty)\), \(\alpha \in (0,1)\), \(\Omega = (0,1)\setminus \{t_1,\dots, t_p\}\), \(0=t_0<t_1< \dots < t_p < t_{p+1}=1\), \(f\in C([0,1]\times [0,+\infty);[0,+\infty))\) and \(I_i \in C([0,\infty);(-\infty,0])\) for each \(i=1,\dots,p\). The results are obtained by using a variational method and critical point theory.
    0 references
    0 references
    singular differential equations
    0 references
    impulses
    0 references
    critical points
    0 references
    mountain pass lemma
    0 references
    0 references
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references