On regularized trace formula of Gribov semigroup generated by the Hamiltonian of Reggeon field theory in Bargmann representation (Q1743872)

From MaRDI portal





scientific article; zbMATH DE number 6860216
Language Label Description Also known as
English
On regularized trace formula of Gribov semigroup generated by the Hamiltonian of Reggeon field theory in Bargmann representation
scientific article; zbMATH DE number 6860216

    Statements

    On regularized trace formula of Gribov semigroup generated by the Hamiltonian of Reggeon field theory in Bargmann representation (English)
    0 references
    0 references
    0 references
    0 references
    16 April 2018
    0 references
    Suppose \({\mathbb E}\) is the Bargmann space of all entire functions \(f:{\mathbb C}\to {\mathbb C}\) such that \(\int_{\mathbb C}|f(z)|^2e^{-|z|^2}\,dx\,dy<\infty\). Let \({\mathbb H}_{\lambda''}=\lambda''{\mathbb G}+{\mathbb H}_{\mu,\lambda}\) be the Gribov operator acting on \({\mathbb E}\), where \({\mathbb G}=a^{*3}a^3\), \(a\) and its adjoint \(a^*\) are annihilation and creation operators, respectively, satisfying \([a,a^*]={\mathbb I}\), and \({\mathbb H}_{\mu,\lambda}=\mu a^*a+i\lambda a^*(a+a^*)a\). Here \(\lambda'',\mu,\lambda\) are real parameters and \(i^2=-1\). Let \(\|\cdot\|_1\) denote the trace-class norm. The main result of the paper is the following asymptotic formula: \(\big\|e^{-t{\mathbb H}_{\lambda''}}-e^{-t\lambda''{\mathbb G}}\big\|_1= t\big\|e^{-t\lambda''{\mathbb G}}{\mathbb H}_{\mu,\lambda}\big\|_1+ \big\| (\lambda''{\mathbb G})^{\delta} e^{-\frac{t}{3}\lambda''{\mathbb G}} \big\|_1 O(t^2)\) as \(t\to 0^+\) for \(\delta\geq 1/2\).
    0 references
    non-self-adjoint linear operators
    0 references
    Gribov operator
    0 references
    regularized trace formula of Gribov operator
    0 references
    asymptotic expansion of trace of semigroups
    0 references
    regularized trace formula of Gribov semigroup
    0 references
    Bargmann space
    0 references
    Reggeon field theory
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references