Determining bounds on the values of parameters for a function \(f^{(m,a)}(z) =\sum _{k=0}^\infty \frac{z^k}{a^{k^2}}(k!)^{m}, {m} \in (0,1),\) to belong to the Laguerre-Pólya class (Q1745950)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Determining bounds on the values of parameters for a function \(f^{(m,a)}(z) =\sum _{k=0}^\infty \frac{z^k}{a^{k^2}}(k!)^{m}, {m} \in (0,1),\) to belong to the Laguerre-Pólya class |
scientific article; zbMATH DE number 6861514
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Determining bounds on the values of parameters for a function \(f^{(m,a)}(z) =\sum _{k=0}^\infty \frac{z^k}{a^{k^2}}(k!)^{m}, {m} \in (0,1),\) to belong to the Laguerre-Pólya class |
scientific article; zbMATH DE number 6861514 |
Statements
Determining bounds on the values of parameters for a function \(f^{(m,a)}(z) =\sum _{k=0}^\infty \frac{z^k}{a^{k^2}}(k!)^{m}, {m} \in (0,1),\) to belong to the Laguerre-Pólya class (English)
0 references
18 April 2018
0 references
entire functions
0 references
Laguerre-Pólya class
0 references
entire functions of order zero
0 references
0 references
0 references
0.86246586
0 references
0.8458295
0 references
0 references
0.8370743
0 references
0 references
0.83429134
0 references
0 references
0.8315681
0 references