Recovery of the Schrödinger operator on the half-line from a particular set of eigenvalues (Q1750740)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Recovery of the Schrödinger operator on the half-line from a particular set of eigenvalues |
scientific article; zbMATH DE number 6871371
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Recovery of the Schrödinger operator on the half-line from a particular set of eigenvalues |
scientific article; zbMATH DE number 6871371 |
Statements
Recovery of the Schrödinger operator on the half-line from a particular set of eigenvalues (English)
0 references
23 May 2018
0 references
Let \(\lambda_j(q,h_n),\; n\geq 1,\) be an eigenvalue of the Sturm-Liouville operator \[ -y''(x)+q(x)y(x)=\lambda y(x),\; x>0, \] \[ (1+x)q(x)\in L(0,\infty),\quad y'(0)-h_ny(0)=0, \] with fixed \(j\). It is proved that if the sequence \(\{h_n\}\) has a limit point, then the specification of \(\lambda_j(q,h_n)\), \(n\geq 1\), uniquely determines \(q\).
0 references
Sturm-Liouville operators
0 references
inverse spectral problem
0 references
0 references
0 references
0 references
0.8813863
0 references
0.8807831
0 references
0.8796436
0 references
0.8772094
0 references
0 references
0.8738115
0 references
0.8720224
0 references
0.8718437
0 references
0.8713414
0 references