The scalar curvature of a projectively invariant metric on a convex domain (Q1754379)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The scalar curvature of a projectively invariant metric on a convex domain |
scientific article; zbMATH DE number 6876746
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The scalar curvature of a projectively invariant metric on a convex domain |
scientific article; zbMATH DE number 6876746 |
Statements
The scalar curvature of a projectively invariant metric on a convex domain (English)
0 references
30 May 2018
0 references
The following results are proved. Theorem 1. Let \(\Omega\subset \mathbb R^n\) be a strongly convex bounded domain with smooth boundary, \(\omega\) a projectively invariant metric on \(\Omega\) and \(R\) be the scalar curvature of \((\Omega,\omega)\). For \(x\) near \(\partial \Omega\), choose \(y(x)\) so that \(\mathrm{dist}(x,y)=\mathrm{dist}(x,\partial \Omega)\), then \[ R(x)=-n(n-1)+2^{{-2}\over{n+1}}J(y)\cdot \mathrm{dist}(x,\partial \Omega)+O(\mathrm{dist}(x,\partial \Omega)^2), \] where \(J\) is the Fubini-Pick invariant of the boundary \(\partial \Omega\). Theorem 2. Let \(\Omega\subset \mathbb R^2\) be a strongly convex bounded domain with smooth boundary, and \(K\) be the sectional curvature of \((\Omega,\omega)\), then \[ K(x)=-1+O(\mathrm{dist}(x,\partial \Omega)^3). \]
0 references
scalar curvature
0 references
Fubini-Pick invariant
0 references
projectively invariant metric
0 references
0 references
0.9428824
0 references
0.9406169
0 references
0.9272078
0 references
0.92259145
0 references
0 references
0.91733104
0 references
0.91158754
0 references
0.9081775
0 references