Harmonic sums and rational multiples of zeta functions (Q1758799)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Harmonic sums and rational multiples of zeta functions |
scientific article; zbMATH DE number 6108232
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Harmonic sums and rational multiples of zeta functions |
scientific article; zbMATH DE number 6108232 |
Statements
Harmonic sums and rational multiples of zeta functions (English)
0 references
16 November 2012
0 references
In this paper the author develops some identities associated with harmonic numbers and gives the integral representations such as \[ \begin{multlined} \sum_{n=1}^\infty \frac{t^n \sum_{r=1}^{an} \frac{1}{r+j}}{n^3{an+j \choose j} {bn+k \choose k} {cn+l \choose l}} \\ = -abct\int_0^1 \int_0^1 \int_0^1 \frac{(1-x)^j(1-y)^k(1-z)^l x^{a-1}y^{b-1}z^{c-1} \log(1-x)}{1-tx^ay^bz^c} dx\,dy\,dz \end{multlined} \] where \(a, b, c\) are real positive numbers, \(j,k,l \geq 0\) and \(|t| < 1\). In particular, \[ \sum_{n=1}^\infty \frac{H_n}{n^3 {n+k \choose k}^2} = -\int_0^1 \int_0^1 \int_0^1 \frac{[(1-y)(1-z)]^k \ln(1-x)}{1-xyz} dx\,dy\,dz. \]
0 references
harmonic numbers
0 references
Riemann zeta functions
0 references
beta function
0 references
binomial coefficients
0 references
series representations
0 references
triple integral representation
0 references
0.94486296
0 references
0.93896705
0 references
0.9186494
0 references
0.9177783
0 references
0.9099502
0 references
0.9093105
0 references
0.9080384
0 references