Estimating the derivative of the Legendre polynomial (Q1759557)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Estimating the derivative of the Legendre polynomial |
scientific article; zbMATH DE number 6109213
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Estimating the derivative of the Legendre polynomial |
scientific article; zbMATH DE number 6109213 |
Statements
Estimating the derivative of the Legendre polynomial (English)
0 references
21 November 2012
0 references
Let \(P_{n}(x)\) be the classical Legendre polynomials, \(-1\leq x\leq 1\). The authors determine the best constant \(A\) in the inequality \[ (1-x^2)^{3/4}\,\Big|\frac{d\,P_{n}(x)}{dx}\Big|<A\,\sqrt{n+\frac{2}{3}},\quad n\geq 2. \] This is \(A=\max_{0\leq t<\infty}\sqrt{t}\,J_{1}(t)=0.825031\dots\), where \(J_{1}(t)\) is the usual Bessel function of the first kind.
0 references
Legendre polynomial
0 references
asymptotics
0 references
recurrence relation
0 references
sharp inequalities
0 references