Estimating the derivative of the Legendre polynomial (Q1759557)

From MaRDI portal





scientific article; zbMATH DE number 6109213
Language Label Description Also known as
English
Estimating the derivative of the Legendre polynomial
scientific article; zbMATH DE number 6109213

    Statements

    Estimating the derivative of the Legendre polynomial (English)
    0 references
    0 references
    21 November 2012
    0 references
    Let \(P_{n}(x)\) be the classical Legendre polynomials, \(-1\leq x\leq 1\). The authors determine the best constant \(A\) in the inequality \[ (1-x^2)^{3/4}\,\Big|\frac{d\,P_{n}(x)}{dx}\Big|<A\,\sqrt{n+\frac{2}{3}},\quad n\geq 2. \] This is \(A=\max_{0\leq t<\infty}\sqrt{t}\,J_{1}(t)=0.825031\dots\), where \(J_{1}(t)\) is the usual Bessel function of the first kind.
    0 references
    Legendre polynomial
    0 references
    asymptotics
    0 references
    recurrence relation
    0 references
    sharp inequalities
    0 references
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references