On the asymptotic behavior of expanding gradient Ricci solitons (Q1759652)

From MaRDI portal





scientific article; zbMATH DE number 6109315
Language Label Description Also known as
English
On the asymptotic behavior of expanding gradient Ricci solitons
scientific article; zbMATH DE number 6109315

    Statements

    On the asymptotic behavior of expanding gradient Ricci solitons (English)
    0 references
    0 references
    21 November 2012
    0 references
    Consider an \(n\)-dimensional expanding gradient Ricci soliton \((M,g,f)\) with faster-than-quadratic-decay of curvature, that is, \[ \lim_{\text{dist} (O,x)\rightarrow \infty} |\mathrm{Sect}(x)|\cdot \mathrm{dist}(O,x)^2=0. \] The main result of this paper shows that if \(M\) is simply connected at infinity and \(n\geq 3\), then its tangent cone at infinity must be a manifold isometric to \(\mathbb R^n\).
    0 references
    Ricci flow
    0 references
    Expanding solutions
    0 references
    curvature decay
    0 references
    0 references
    0 references
    0 references
    0 references

    Identifiers