Jørgensen groups of parabolic type II (countably infinite case) (Q1763034)

From MaRDI portal





scientific article; zbMATH DE number 2134864
Language Label Description Also known as
English
Jørgensen groups of parabolic type II (countably infinite case)
scientific article; zbMATH DE number 2134864

    Statements

    Jørgensen groups of parabolic type II (countably infinite case) (English)
    0 references
    0 references
    0 references
    0 references
    18 February 2005
    0 references
    Let \[ A=\begin{pmatrix} 1&1\\0&1\end{pmatrix},\;\;B_{\theta, k }=\begin{pmatrix} {k\exp{(i\theta)}} &{i\exp{(-i\theta)}(k^2\exp{(2i\theta)}-1)}\\{-i\exp{(i\theta)}} &{k\exp{(i\theta)}}\end{pmatrix} \] and \[ G_{\theta,k}=\langle A,B_{\theta,k}\rangle. \] The authors consider the following. Problem: Find all discrete \(G_{\theta,k}\). They completely solved this problem in three papers [Jørgensen groups of parabolic type I ( Finite case), preprint RIMS Kokyoroku 1293, 65--77 (2002), III ( Uncountably infinite case), preprint]. The main aim of this paper is to prove that the group \(G_{\theta,k}\) with \(0\leq \theta \leq \frac{\pi}{2}\) and \(\frac{\sqrt{3}}{2}< k\leq 1\) is a Jørgensen group (discrete) if and only if one of the following conditions holds. (1) \(\theta =0\) and \(k=1\); (2) \(\theta =0\) and \(k=\cos \frac{\pi}{n}\) \((n=7,8,\cdots)\); (3) \(\theta =\frac{\pi}{4}\) and \(k=1\); (4) (Sato-Yamada) \(\theta = \frac{\pi}{2}\) and \(k=1\); (5) (Sato-Yamada) \(\theta =\frac{\pi}{2}\) and \(k=\cos \frac{\pi}{n}\) \((n=7,8,\cdots)\).
    0 references
    Kleinian group
    0 references
    Jorgensen group
    0 references
    Poincaré polyhedron theorem
    0 references
    0 references

    Identifiers