Notes on 4-dimensional hyper-para-Kähler manifolds (Q1763116)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Notes on 4-dimensional hyper-para-Kähler manifolds |
scientific article; zbMATH DE number 2135473
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Notes on 4-dimensional hyper-para-Kähler manifolds |
scientific article; zbMATH DE number 2135473 |
Statements
Notes on 4-dimensional hyper-para-Kähler manifolds (English)
0 references
21 February 2005
0 references
Let \((M, I, J, K, g)\) be a \(4\)-dimensional almost hyper-Hermitian manifold and \(R\) its Riemannian curvature. \(M\) is called hyper-para-Kähler if \(M\) satisfies the conditions \[ R(X, Y) \cdot I = R(X, Y) \cdot J = R(X, Y) \cdot K = 0, \] for any vector fields \(X, Y\) on \(M\). In the present paper the author proves that a \(4\)-dimensional hyper-para-Kähler manifold \((M, I, J, K, g)\) is locally deformable to a hyper-Kähler manifold, under a local smooth SO(3)-valued function.
0 references
hyper-para-Kähler
0 references
hyper-Kähler
0 references
0.91976726
0 references
0.9197209
0 references
0.91581535
0 references
0.9149287
0 references
0.9093083
0 references
0.90876555
0 references