Boundedness of Fatou components of holomorphic maps (Q1768355)

From MaRDI portal





scientific article; zbMATH DE number 2145894
Language Label Description Also known as
English
Boundedness of Fatou components of holomorphic maps
scientific article; zbMATH DE number 2145894

    Statements

    Boundedness of Fatou components of holomorphic maps (English)
    0 references
    15 March 2005
    0 references
    The authors discuss the boundedness of Fatou components of transcendent holomorphic maps composited by any finite holomorphic maps with small growth. Let \(f_1,\dots,f_N\) be nonconstant holomorphic maps in the plane, each having order less than 1/2. They show that if the lower order of \(f_j\) is greater than 0 for some \(j\in \{1,2,\dots,N\}\), then the Fatou set of the map \(h=f_N\circ f_{N-1} \circ \cdots\circ f_1\) has no unbounded components.
    0 references
    Fatou set
    0 references
    Julia set
    0 references
    boundedness
    0 references
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references