On class number formula for the real quadratic fields (Q1769606)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On class number formula for the real quadratic fields |
scientific article; zbMATH DE number 2151776
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On class number formula for the real quadratic fields |
scientific article; zbMATH DE number 2151776 |
Statements
On class number formula for the real quadratic fields (English)
0 references
4 April 2005
0 references
Let \(d\) be the discriminant of a real quadratic number field with fundamental unit \(\varepsilon\), and class number \(h\), and \(\chi\) the associated Dirichlet character. Then the author proves the class number formula \(h = [\sqrt{d}/(2 \log \varepsilon) \cdot \sum_{n=1}^{[d/2]} \chi(n)/n]\).
0 references
real quadratic fields
0 references
class number formula
0 references