Mean behaviour and distribution properties of multiplicative functions (Q1770711)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Mean behaviour and distribution properties of multiplicative functions |
scientific article; zbMATH DE number 2153535
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Mean behaviour and distribution properties of multiplicative functions |
scientific article; zbMATH DE number 2153535 |
Statements
Mean behaviour and distribution properties of multiplicative functions (English)
0 references
7 April 2005
0 references
Let \(f: \mathbb{N}\to\mathbb{C}\) be a multiplicative function and \({\mathfrak a}= (a_n)\) a sequence of natural numbers. The function \(f\) has mean-value \(m(f,{\mathfrak a})\) on \({\mathfrak a}\), if the normalized summatory function \(M(f,{\mathfrak a}, x):= {1\over x}\sum_{n\leq x} f(a_n)\) converges to \(M(f,{\mathfrak a})\) as \(x\to\infty\). The authors give criteria for existence of \(M(f,{\mathfrak a})\) and estimates for \(M(f,{\mathfrak a}, x)- M(f,{\mathfrak a})\). They discuss examples as \(a_n= n\), \(a_n= 2^n- 1\) (Mersenne numbers), \(a_n= p_n- 1\) (\(n\)th shifted prime) and visualize their results. Finally, they prove distribution properties and cluster points of the image sequence \(f({\mathfrak a})\).
0 references
Multiplicative functions
0 references
Asymptotic estimates
0 references
Dirichlet series
0 references
Euler products
0 references
Thin sequences
0 references
Uniform summability
0 references
Distribution functions
0 references
0.92307794
0 references
0.9209279
0 references
0.92066336
0 references
0.9206632
0 references
0.9174154
0 references
0.9138713
0 references
0.91313064
0 references