\(L^p\)-estimates on diffusion processes (Q1770982)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: \(L^p\)-estimates on diffusion processes |
scientific article; zbMATH DE number 2153752
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | \(L^p\)-estimates on diffusion processes |
scientific article; zbMATH DE number 2153752 |
Statements
\(L^p\)-estimates on diffusion processes (English)
0 references
7 April 2005
0 references
Let \(\varphi\) be a nonnegative continuous function. For homogeneous diffusion processes \(X_t\) and stopping times \(\tau\), the authors study the relationship between \(\sup_{0\leq t\leq \tau} | X_t |\) and \(\int_0^\tau \varphi (X_s ) \,ds\) in \(L^p\)-norm.
0 references
Diffusion processes
0 references
Brownian motion
0 references
Martingales
0 references
Stochastic differential equations
0 references
Itô formula
0 references
Bessel processes
0 references
Ornstein-Uhlenbeck process
0 references
Burkholder-Davis-Gundy inequalities
0 references
Maximal inequalities
0 references
0.95608276
0 references
0.9373436
0 references
0.92228144
0 references
0.91800946
0 references
0.9162465
0 references
0 references
0.90905416
0 references