Weak and strong convergence theorems for maximal monotone operators in a Banach space (Q1771259)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Weak and strong convergence theorems for maximal monotone operators in a Banach space |
scientific article; zbMATH DE number 2153984
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Weak and strong convergence theorems for maximal monotone operators in a Banach space |
scientific article; zbMATH DE number 2153984 |
Statements
Weak and strong convergence theorems for maximal monotone operators in a Banach space (English)
0 references
7 April 2005
0 references
Let \(E\) be a smooth and uniformly convex Banach space with the normalized duality mapping \(J: E \to E^*\) and \(T \subset E \times E^*\) a maximal monotone operator with \(T^{-1} 0 \neq \emptyset\). Let \(J_r=(J+r T)^{-1} J\), \(r>0\), and \(P(x)=\text{ {argmin}}_{y \in T^{-1}0} (\| x\|^2-2 \langle x, Jy\rangle+ \| y\|^2)\). The authors study the iterative process \(x_{n+1}=J^{-1}(\alpha_n J(x_n)+(1-\alpha_n) J(J_{r_n} x_n) )\), \(\alpha_n \in [0,1]\), \(r_n \in (0, \infty)\) \((n=1, 2, \dots)\) and prove that the sequence \(\{ P(x_n) \}\) converges strongly to an element of \(T^{-1} 0\). The results are applied to the convex minimization problem and the variational inequality problem.
0 references
convex minimization problem
0 references
maximal monotone operator
0 references
proximal point algorithm
0 references
resolvent
0 references
uniformly convex Banach space
0 references
strong convergence
0 references
0 references
0 references
0 references
0 references
0.9835422
0 references
0.9778882
0 references
0.9652461
0 references
0.95855725
0 references
0.9503456
0 references
0.9502882
0 references