Maximally singular Sobolev functions (Q1772373)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Maximally singular Sobolev functions |
scientific article; zbMATH DE number 2157698
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Maximally singular Sobolev functions |
scientific article; zbMATH DE number 2157698 |
Statements
Maximally singular Sobolev functions (English)
0 references
18 April 2005
0 references
In any Sobolev space \(W^{m,p}(\mathbb{R}^N)\) with \(p>1\), \(mp\leq N\), a function is constructed, the set of singular points of which has the maximal possible Hausdorff dimension equal to \(N-mp\). The analogous result is proven also for Bessel potential spaces \(L^{\alpha,p}(\mathbb{R})\) with \(\alpha>0\), \(p>1\).
0 references
Sobolev spaces
0 references
Bessel potential space
0 references
Hausdorff dimension
0 references
singular point
0 references