Symplectic difference systems: oscillation theory and hyperbolic Prüfer transformation (Q1773508)

From MaRDI portal





scientific article; zbMATH DE number 2163652
Language Label Description Also known as
English
Symplectic difference systems: oscillation theory and hyperbolic Prüfer transformation
scientific article; zbMATH DE number 2163652

    Statements

    Symplectic difference systems: oscillation theory and hyperbolic Prüfer transformation (English)
    0 references
    0 references
    29 April 2005
    0 references
    The author describes a variational principle, the Riccati technique and several transformation methods for the investigation of oscillatory properties of the symplectic difference equation \[ z_{k+1} = \mathcal{S}_k z_k, \;k = 0,1,\dots, \] where \(z \in \mathbb{R}^{2n}, \;\mathcal{S}_k^T J \mathcal{S}_k = J, \;\mathcal{S}_k \in \mathbb{R}^{2n \times 2n},\) \(J = \bigl( \begin{matrix} 0 & I \\ -I & 0 \end{matrix}\bigr).\) A so-called hyperbolic discrete Prüfer transformation is proposed.
    0 references
    symplectic difference equation
    0 references
    oscillation
    0 references
    variational principle
    0 references
    Riccati technique
    0 references
    hyperbolic discrete Prüfer transformation
    0 references

    Identifiers