Symplectic difference systems: oscillation theory and hyperbolic Prüfer transformation (Q1773508)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Symplectic difference systems: oscillation theory and hyperbolic Prüfer transformation |
scientific article; zbMATH DE number 2163652
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Symplectic difference systems: oscillation theory and hyperbolic Prüfer transformation |
scientific article; zbMATH DE number 2163652 |
Statements
Symplectic difference systems: oscillation theory and hyperbolic Prüfer transformation (English)
0 references
29 April 2005
0 references
The author describes a variational principle, the Riccati technique and several transformation methods for the investigation of oscillatory properties of the symplectic difference equation \[ z_{k+1} = \mathcal{S}_k z_k, \;k = 0,1,\dots, \] where \(z \in \mathbb{R}^{2n}, \;\mathcal{S}_k^T J \mathcal{S}_k = J, \;\mathcal{S}_k \in \mathbb{R}^{2n \times 2n},\) \(J = \bigl( \begin{matrix} 0 & I \\ -I & 0 \end{matrix}\bigr).\) A so-called hyperbolic discrete Prüfer transformation is proposed.
0 references
symplectic difference equation
0 references
oscillation
0 references
variational principle
0 references
Riccati technique
0 references
hyperbolic discrete Prüfer transformation
0 references
0.95518893
0 references
0.9423249
0 references
0.9146087
0 references
0.91224325
0 references
0.9034535
0 references
0.8975521
0 references
0.89416873
0 references