Dirichlet and Bergman spaces of holomorphic functions on the unit ball of \(\mathbb C^{ n }\) (Q1774122)

From MaRDI portal





scientific article; zbMATH DE number 2162478
Language Label Description Also known as
English
Dirichlet and Bergman spaces of holomorphic functions on the unit ball of \(\mathbb C^{ n }\)
scientific article; zbMATH DE number 2162478

    Statements

    Dirichlet and Bergman spaces of holomorphic functions on the unit ball of \(\mathbb C^{ n }\) (English)
    0 references
    0 references
    29 April 2005
    0 references
    Let \(B_n\) denote the unit ball in \(\mathbb C^n\), \(n\geqslant1\), and let \(\tau\) and \(\widetilde\nabla\) denote the volume measure and gradient with respect to the Bergman metric on \(B_n\). The author considers the weighted Dirichlet spaces \(\mathcal D_\gamma\), \(\gamma>(n- 1)\), and weighted Bergman spaces \(A_\alpha^p\), \(0<p<\infty\), \(\alpha>n\), of holomorphic functions \(f\) on \(B_n\) for which \(D_\gamma(f)=\int_{B_n}(1-| z| ^2)^\gamma| \widetilde\nabla f(z)| ^2\, d\tau(z)<\infty\), \(\| f\|_{\mathcal D_\gamma}=| f(0)| +D_\gamma(f)^\frac{1}{2}\), and \(\| f\|_{A_\alpha^p}^p=\int_{B_n}(1-| z| ^2)^\alpha| f(z)| ^p\, d\tau(z)<\infty.\) The main results of the paper are the following theorems. Theorem 1. {Let \(f\) be holomorphic on \(B_n\) and \(\alpha>n\). (a) If \(f\in\mathcal D_\gamma\) for some \(\gamma\), \((n-1)<\gamma\leqslant\alpha\), then \(f\in A^p_\alpha\), for all \(p\), \(0<p\leqslant 2\alpha/\gamma\), with \(\| f\|_{A_\alpha^p}\leqslant C\| f\|_{\mathcal D_\gamma}\). (b) If \(f\in A_\alpha^p\) for some \(p\), \(0<p\leqslant2\), then \(f\in\mathcal D_\gamma\) for all \(\gamma\geqslant2\alpha/p\) with \(\| f\|_{\mathcal D_\gamma} \leqslant C\| f\|_{A_\alpha^p}\).} Theorem 2. {Suppose \(f(z) =\sum a_\beta z^\beta\) is holomorphic in \(B_n\). If \[ \sum_{k=1}^\infty\frac{1}{\Gamma(2\alpha/p+k+1)}\sum_{| \beta| =k}\beta! | a_\beta| ^2<\infty\tag{1} \] for some \(p\), \(2\leqslant p<\infty\), and \(\alpha>n\), then \(f\in A_\alpha^p\). Conversely, if \(f\in A^p_\alpha\) for some \(p, 0<p\leqslant2\), then the series in (1) converges.} For the special case \(n = 1\), the statement of theorem 2 is as follows. Theorem 3. {Suppose \(f(z) =\sum a_k z^k\) is holomorphic in the unit disc \(\mathbb D\). If \[ \sum_{k=1}^\infty k^{1-2\alpha/p}| a_k| ^2<\infty\tag{2} \] for some \(p\), \(2\leqslant p<\infty\), and \(\alpha > 1\), then \(f\in A_\alpha^p(\mathbb D)\). Conversely, if \(f\in A_\alpha^p\) for some \(p\), \(0 <p\leqslant 2\), and \(\alpha > 1\), then the series in (2) converges.} Two examples are provided to show that the results are best possible.
    0 references
    Bergman metric
    0 references
    weighted Bergman spaces of holomorphic function
    0 references
    weighted Dirichlet spaces
    0 references
    Hardy spaces
    0 references
    Laplace-Beltrami operator
    0 references

    Identifiers