On the finite element method for the biharmonic Dirichlet problem in polygonal domains; quasi-optimal rate of convergence (Q1774291)

From MaRDI portal





scientific article; zbMATH DE number 2162986
Language Label Description Also known as
English
On the finite element method for the biharmonic Dirichlet problem in polygonal domains; quasi-optimal rate of convergence
scientific article; zbMATH DE number 2162986

    Statements

    On the finite element method for the biharmonic Dirichlet problem in polygonal domains; quasi-optimal rate of convergence (English)
    0 references
    0 references
    29 April 2005
    0 references
    The paper deals with the finite element method for the biharmonic equation in the polygonal domain \[ \Delta ^2 u = f, \quad \text{in} \;\Omega \subset \mathbb{R}^2, \] \[ u = \frac{\partial u}{\partial n} = 0 \quad \text{on} \;\partial \Omega. \] The authors derive a quasi-optimal rate for the convergence of the error using tools of the interpolation analysis.
    0 references
    0 references
    biharmonic Dirichlet problem
    0 references
    polygonal domain
    0 references
    finite element method
    0 references
    optimal rate of convergence
    0 references
    interpolation theory
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references