On the finite element method for the biharmonic Dirichlet problem in polygonal domains; quasi-optimal rate of convergence (Q1774291)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the finite element method for the biharmonic Dirichlet problem in polygonal domains; quasi-optimal rate of convergence |
scientific article; zbMATH DE number 2162986
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the finite element method for the biharmonic Dirichlet problem in polygonal domains; quasi-optimal rate of convergence |
scientific article; zbMATH DE number 2162986 |
Statements
On the finite element method for the biharmonic Dirichlet problem in polygonal domains; quasi-optimal rate of convergence (English)
0 references
29 April 2005
0 references
The paper deals with the finite element method for the biharmonic equation in the polygonal domain \[ \Delta ^2 u = f, \quad \text{in} \;\Omega \subset \mathbb{R}^2, \] \[ u = \frac{\partial u}{\partial n} = 0 \quad \text{on} \;\partial \Omega. \] The authors derive a quasi-optimal rate for the convergence of the error using tools of the interpolation analysis.
0 references
biharmonic Dirichlet problem
0 references
polygonal domain
0 references
finite element method
0 references
optimal rate of convergence
0 references
interpolation theory
0 references
0.9352232
0 references
0.9327283
0 references
0.9255972
0 references
0.91297436
0 references
0.9114315
0 references
0.90958416
0 references
0.90941256
0 references
0.9064791
0 references