Rate of convergence of bounded variation functions by a Bézier-Durrmeyer variant of the Baskakov operators (Q1774675)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Rate of convergence of bounded variation functions by a Bézier-Durrmeyer variant of the Baskakov operators |
scientific article; zbMATH DE number 2168625
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Rate of convergence of bounded variation functions by a Bézier-Durrmeyer variant of the Baskakov operators |
scientific article; zbMATH DE number 2168625 |
Statements
Rate of convergence of bounded variation functions by a Bézier-Durrmeyer variant of the Baskakov operators (English)
0 references
18 May 2005
0 references
Let \(W(0,\infty)\) be the class of functions \(f\) which are locally integrable on \((0,\infty)\) and are of polynomial growth as \(t\to\infty\), that is, for some positive \(r\), there holds \(f(t)= O(t^r)\), \(t\to\infty\). The Durrmeyer variant \(\widetilde V_n\) of the well-known Baskakov operators associates to each function \(f\in W(0,\infty)\) the series \[ \widetilde V_n(f,x)= (n-1) \sum^\infty_{k=0} p_{nkk}(x) \int^\infty_0 p_{n,k}(t) f(t)\,dt, \] where \(x\in [0,\infty)\) and \(p_{n,k}(x)= {n+k-1\choose k}x^k(1-x)^{-n-k}\). For each function \(f\in W(0,\infty)\) and \(\alpha\geq 1\), the Bézier-type Baskakov-Durrmeyer operators \(\widetilde V_{n,\alpha}\) are defined as follows: \[ \widetilde V_{n,\alpha}(f, x)= (n-1) \sum^\infty_{k=0} Q^{(\alpha)}_{n,k}(x) \int^\infty_0 p_{n,k}(t) f(t)\,dt, \] where \(Q^{(\alpha)}_{n,k}(x)= J^\alpha_{nkk}(x)- J^\alpha_{n,k+1}(x)\) and \(J_{n,k}(x)= \sum^\infty_{j=k} p_{n,j}(x)\). The main result is the following: Theorem. Assume that \(f\in W(0,\infty)\) is a function of bounded variation on every finite subinterval of \((0,\infty)\). Furthermore, let \(\alpha\geq 1\), \(\lambda> 2\) and \(x\in (0,\infty)\) be given. Then, for each \(r\in\mathbb{N}\), there exists a constant \(M(f,\alpha,r,x)\) such that for sufficiently large \(n\), the Bézier-type Baskakov-Durrmeyer operators \(\widetilde V_{n,\alpha}\) satisfy the estimate \[ \begin{multlined}\Biggl|\widetilde V_{n,\alpha}(f,x)- \Biggl[{1\over \alpha+1} f(x+)+ {\alpha\over \alpha+1} f(x-)\Biggr]\Biggr|\leq\\ {\alpha(10+11x)\over 2\sqrt{n\times (1+x)}} |f(x+)- f(x-)|+ {2\alpha\lambda(1+ x)+x\over nx} \sum^n_{k=1} \bigvee^{x+ x/\sqrt{k}}_{x-x/\sqrt{k}}(g_x)+ {M(f,\alpha, r,x)\over n^r},\end{multlined} \] where \[ q_x(t)= \begin{cases} f(t)- f(x-),\quad &\text{if }0\leq t< x\\ 0,\quad &\text{if }t= x\\ f(t)- f(x+),\quad &\text{if }x< t<\infty\end{cases} \] and \(\bigvee^b_a (g_x)\) is the total variation of \(g_x\) on \([a,b]\).
0 references
Baskakov-Durrmeyer operator
0 references
Bézier-Durrmeyer operator
0 references
function of bounded variation
0 references