The Igusa local zeta function of the simple prehomogeneous vector space \((\text{GL}(1)^4\times \text{SL}(2n+1),\Lambda_2\oplus \Lambda_1\oplus\Lambda_1\oplus\Lambda_1)\) (Q1775414)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The Igusa local zeta function of the simple prehomogeneous vector space \((\text{GL}(1)^4\times \text{SL}(2n+1),\Lambda_2\oplus \Lambda_1\oplus\Lambda_1\oplus\Lambda_1)\) |
scientific article; zbMATH DE number 2164239
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The Igusa local zeta function of the simple prehomogeneous vector space \((\text{GL}(1)^4\times \text{SL}(2n+1),\Lambda_2\oplus \Lambda_1\oplus\Lambda_1\oplus\Lambda_1)\) |
scientific article; zbMATH DE number 2164239 |
Statements
The Igusa local zeta function of the simple prehomogeneous vector space \((\text{GL}(1)^4\times \text{SL}(2n+1),\Lambda_2\oplus \Lambda_1\oplus\Lambda_1\oplus\Lambda_1)\) (English)
0 references
3 May 2005
0 references
In Theorem 2.1 the author determines explicitly the Igusa local zeta function of the simple prehomogeneous vector space \( \left( \text{GL}(1)\times \text{SL}(2n+1),\Lambda _{2}\oplus \Lambda _{1}\oplus \Lambda _{1}\oplus \Lambda _{1}\right) ,n\geq 1. \) The Igusa zeta function as a distribution on the space of Schwartz-Bruhat functions satisfies a functional equation of the type \(Z(s-\kappa ,\widehat{ \Phi ^{\ast }})=\gamma \left( s\right) Z^{\ast }(-s,\Phi ^{\ast })\), where \( \widehat{\left( \cdot \right) }\) denotes the Fourier transform, \(\Phi ^{\ast }\) is a Schwartz-Bruhat function, and \(Z^{\ast }(s,\Phi ^{\ast })\) is the ''dual'' of \ \(Z(s,\Phi )\). In Theorem 4.1 the author determines explicitly the \(\Gamma \)-factor \(\gamma \left( s\right) \). Furthermore, the author expresses \(\gamma \left( s\right) \) in terms of the Tate local factor and the \(b\)-function of the prehomogeneous space.
0 references
Igusa local zeta function
0 references
prehomogeneous vector spaces
0 references
0.90024304
0 references
0.8964352
0 references
0.87565064
0 references
0.8633094
0 references
0.8533215
0 references