Weak type \((1,1)\) bounds for a class of the Littlewood-Paley operators (Q1775419)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Weak type \((1,1)\) bounds for a class of the Littlewood-Paley operators |
scientific article; zbMATH DE number 2164244
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Weak type \((1,1)\) bounds for a class of the Littlewood-Paley operators |
scientific article; zbMATH DE number 2164244 |
Statements
Weak type \((1,1)\) bounds for a class of the Littlewood-Paley operators (English)
0 references
3 May 2005
0 references
Let \(\Omega\in L^1(S^{n-1}) \) be homogeneous of degree zero and have cancellation property \[ \int_{S^{n-1}}\Omega(x')\,d\sigma(x')=0. \] The authors consider the parametrized Littlewood-Paley function \(\mu_{\lambda}^{*,\rho}\) of Marcinkiewicz type, defined by \[ \mu_{\lambda}^{*,\rho}(f)(x)=\left(\iint_{\mathbb R_+^{n+1}} \left( \frac {t}{t+| x-y| }\right)^{\lambda n}\big| (\varphi_t^\rho\ast f)(y)\big| ^2 \frac {dydt}{t^{n+1}}\right)^{1/2} \] for \(\lambda>1\), where \(\varphi_t^\rho(x) =\frac 1{t^n}\Omega(x)| x/t| ^{-n+\rho}\chi_{| x| \leq1}(x/t)\). Let \(\omega_q(\delta)\) be the \(L^q\) modulus of continuity, defined by \(\omega_q(\delta) =\sup_{\| \gamma\| \leq \delta}\bigl(\int_{S^{n-1}} | \Omega(\gamma x')-\Omega(x')| ^q\,d\sigma(x') \bigr)^{1/q}\), where \(\gamma\) is a rotation on \(S^{n-1}\) and \(\| \gamma\| =\sup_{x'\in S^{n-1}}{\| \gamma x'-x'\| }\). The authors' main result is as follows: Let \(\Omega\in L^2(S^{n-1}) \) satisfy the cancellation condition and \( \int_0^1 \frac {\omega _2(\delta)}{\delta } (1+| \log \delta | )^\sigma d\delta <\infty\) for some \(\sigma>1\). Then, if \(\rho>n/2\) and \(\lambda>2\rho/n+1/n+1\), \( \mu_{\lambda}^{*,\rho}\) has the weak \((1, 1)\) property. From this, it follows the weak \((1,1)\) boundedness of the area integral of the Marcinkiewicz type. The weak \((1,1)\) boundedness of Marcinkiewicz integral was given by \textit{D. Fan} and \textit{S. Sato} [Tohoku Math. J., II. Ser. 53, 265--284 (2001; Zbl 1021.42005)].
0 references
Littlewood-Paley \(g_\lambda^*\) function
0 references
Marcinkiewicz integral
0 references
weak \((1,1)\) estimate
0 references
area integral
0 references
boundedness
0 references
0.77658284
0 references
0.77247816
0 references
0.7338431
0 references
0.73356444
0 references
0.73290765
0 references
0.73245376
0 references