On the Diophantine equation \(\frac{x^3-1}{x-1}=\frac{y^n-1}{y-1}\) (Q1775568)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the Diophantine equation \(\frac{x^3-1}{x-1}=\frac{y^n-1}{y-1}\) |
scientific article; zbMATH DE number 2164817
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the Diophantine equation \(\frac{x^3-1}{x-1}=\frac{y^n-1}{y-1}\) |
scientific article; zbMATH DE number 2164817 |
Statements
On the Diophantine equation \(\frac{x^3-1}{x-1}=\frac{y^n-1}{y-1}\) (English)
0 references
4 May 2005
0 references
The author proves: Theorem. The positive integer solutions \((x,y,n)\) of the equation \[ {x^3-1\over x-1}={y^n-1\over y-1}, \quad \text{with \(n\) odd and \(x\not=y\),} \] are \((x,y,n)=(5,2,5)\) and \((90,2,13)\). The proof uses a previous result of Le and elementary arguments of algebraic number theory for quadratic fields.
0 references
exponential Diophantine equations
0 references
quadratic equations
0 references
0 references
0 references