On packing Hamilton cycles in \(\varepsilon\)-regular graphs (Q1775898)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On packing Hamilton cycles in \(\varepsilon\)-regular graphs |
scientific article; zbMATH DE number 2165073
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On packing Hamilton cycles in \(\varepsilon\)-regular graphs |
scientific article; zbMATH DE number 2165073 |
Statements
On packing Hamilton cycles in \(\varepsilon\)-regular graphs (English)
0 references
4 May 2005
0 references
The main result of the paper says that if \(G\) is a graph on \(n\) vertices with the minimum degree \(\geq \alpha n,\) where \(\alpha \gg \varepsilon >10(\ln n/n)^{1/6},\) and for each disjoint subsets \(S,T\) of vertices of \( G,| S| ,| T| \geq \varepsilon n\) it is \(\left| \frac{e(S,T)}{| S| | T| } -\alpha\right | \leq \varepsilon ,\) then \(G\) contains \((\frac{\alpha }{2} -3\varepsilon )n\) edge-disjoint Hamilton cycles.
0 references
Hamilton cycles
0 references
0 references
0 references
0 references
0.92704517
0 references
0.92680264
0 references
0.9212632
0 references
0.92085475
0 references
0.91927147
0 references
0.9138411
0 references
0.90602463
0 references
0.90461844
0 references