Corresponding Banach spaces on time scales (Q1779450)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Corresponding Banach spaces on time scales |
scientific article; zbMATH DE number 2173202
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Corresponding Banach spaces on time scales |
scientific article; zbMATH DE number 2173202 |
Statements
Corresponding Banach spaces on time scales (English)
0 references
1 June 2005
0 references
Let \({\mathbb T}\) be a time scale, i.e. a nonempty closed subset of \({\mathbb R}\). The authors prove that for a given vector space \((\tilde V,+,\cdot)\) of functions \(f:{\mathbb T}\to{\mathbb R}\) and for the corresponding vector space \((V,\oplus,\odot)\) of positively regressive functions \(p\) (i.e., \(1+\mu(x)p(x)>0\) on \({\mathbb T}\) with the operations \(\oplus\) and \(\odot\) defined in ``usual'' time scales way), the cylinder transform \(\xi_\mu:(V,\oplus,\odot)\to(\tilde V,+,\cdot)\) is an isomorphism. This result is then extended to the Banach and Hilbert spaces setting.
0 references
time scale
0 references
regressivity
0 references
cylinder transform
0 references
isometry
0 references
Banach and Hilbert spaces
0 references