A corotational formulation for large displacement analysis of functionally graded sandwich beam and frame structures (Q1793328)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A corotational formulation for large displacement analysis of functionally graded sandwich beam and frame structures |
scientific article; zbMATH DE number 6953349
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A corotational formulation for large displacement analysis of functionally graded sandwich beam and frame structures |
scientific article; zbMATH DE number 6953349 |
Statements
A corotational formulation for large displacement analysis of functionally graded sandwich beam and frame structures (English)
0 references
12 October 2018
0 references
Summary: A corotational finite element formulation for large displacement analysis of planar functionally graded sandwich (FGSW) beam and frame structures is presented. The beams and frames are assumed to be formed from a metallic soft core and two symmetric functionally graded skin layers. The Euler-Bernoulli beam theory and von Kármán nonlinear strain-displacement relationship are adopted for the local strain. Exact solution of nonlinear equilibrium equations for a beam segment is employed to interpolate the displacement field for avoiding the membrane locking. An incremental-iterative procedure is used in combination with the arc-length control method to compute the equilibrium paths. Numerical examples show that the proposed formulation is capable of evaluating accurately the large displacement response with just several elements. A parametric study is carried out to highlight the effect of the material distribution, the core thickness to height ratio on the large displacement behaviour of the FGSW beam, and frame structures.
0 references
0 references
0 references
0 references
0 references
0 references
0 references