Inverse uniqueness in interior transmission problem and its eigenvalue tunneling in simple domain (Q1796538)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Inverse uniqueness in interior transmission problem and its eigenvalue tunneling in simple domain |
scientific article; zbMATH DE number 6957365
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Inverse uniqueness in interior transmission problem and its eigenvalue tunneling in simple domain |
scientific article; zbMATH DE number 6957365 |
Statements
Inverse uniqueness in interior transmission problem and its eigenvalue tunneling in simple domain (English)
0 references
17 October 2018
0 references
Summary: We study inverse uniqueness with a knowledge of spectral data of an interior transmission problem in a penetrable simple domain. We expand the solution in a series of one-dimensional problems in the far-fields. We define an ODE by restricting the PDE along a fixed scattered direction. Accordingly, we obtain a Sturm-Liouville problem for each scattered direction. There exists the correspondence between the ODE spectrum and the PDE spectrum. We deduce the inverse uniqueness on the index of refraction from the discussion on the uniqueness anglewise of the Strum-Liouville problem.
0 references
0 references
0 references
0 references